3.1948 \(\int \frac{1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx\)

Optimal. Leaf size=62 \[ -\frac{2 \left (a e^2+c d^2+2 c d e x\right )}{\left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[Out]

(-2*(c*d^2 + a*e^2 + 2*c*d*e*x))/((c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)
*x + c*d*e*x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.035058, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.034 \[ -\frac{2 \left (a e^2+c d^2+2 c d e x\right )}{\left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

Antiderivative was successfully verified.

[In]  Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(-3/2),x]

[Out]

(-2*(c*d^2 + a*e^2 + 2*c*d*e*x))/((c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)
*x + c*d*e*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 1.46869, size = 63, normalized size = 1.02 \[ - \frac{2 a e^{2} + 2 c d^{2} + 4 c d e x}{\left (a e^{2} - c d^{2}\right )^{2} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

-(2*a*e**2 + 2*c*d**2 + 4*c*d*e*x)/((a*e**2 - c*d**2)**2*sqrt(a*d*e + c*d*e*x**2
 + x*(a*e**2 + c*d**2)))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0854703, size = 49, normalized size = 0.79 \[ -\frac{2 \left (a e^2+c d (d+2 e x)\right )}{\left (c d^2-a e^2\right )^2 \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]  Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(-3/2),x]

[Out]

(-2*(a*e^2 + c*d*(d + 2*e*x)))/((c*d^2 - a*e^2)^2*Sqrt[(a*e + c*d*x)*(d + e*x)])

_______________________________________________________________________________________

Maple [A]  time = 0.007, size = 86, normalized size = 1.4 \[ -2\,{\frac{ \left ( cdx+ae \right ) \left ( ex+d \right ) \left ( 2\,cdex+a{e}^{2}+c{d}^{2} \right ) }{ \left ({a}^{2}{e}^{4}-2\,ac{d}^{2}{e}^{2}+{c}^{2}{d}^{4} \right ) \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+aed \right ) ^{3/2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

-2*(c*d*x+a*e)*(e*x+d)*(2*c*d*e*x+a*e^2+c*d^2)/(a^2*e^4-2*a*c*d^2*e^2+c^2*d^4)/(
c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(-3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.314021, size = 207, normalized size = 3.34 \[ -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )}}{a c^{2} d^{5} e - 2 \, a^{2} c d^{3} e^{3} + a^{3} d e^{5} +{\left (c^{3} d^{5} e - 2 \, a c^{2} d^{3} e^{3} + a^{2} c d e^{5}\right )} x^{2} +{\left (c^{3} d^{6} - a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} + a^{3} e^{6}\right )} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(-3/2),x, algorithm="fricas")

[Out]

-2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)/(a*c^
2*d^5*e - 2*a^2*c*d^3*e^3 + a^3*d*e^5 + (c^3*d^5*e - 2*a*c^2*d^3*e^3 + a^2*c*d*e
^5)*x^2 + (c^3*d^6 - a*c^2*d^4*e^2 - a^2*c*d^2*e^4 + a^3*e^6)*x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(-3/2), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.236174, size = 134, normalized size = 2.16 \[ -\frac{2 \,{\left (\frac{2 \, c d x e}{c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}} + \frac{c d^{2} + a e^{2}}{c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}\right )}}{\sqrt{c d x^{2} e + a d e +{\left (c d^{2} + a e^{2}\right )} x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(-3/2),x, algorithm="giac")

[Out]

-2*(2*c*d*x*e/(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4) + (c*d^2 + a*e^2)/(c^2*d^4 - 2
*a*c*d^2*e^2 + a^2*e^4))/sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)